Perfect Permutation Codes with the Kendall's $\tau$-Metric

نویسندگان

  • Sarit Buzaglo
  • Tuvi Etzion
چکیده

The rank modulation scheme has been proposed for efficient writing and storing data in non-volatile memory storage. Error-correction in the rank modulation scheme is done by considering permutation codes. In this paper we consider codes in the set of all permutations on n elements, Sn, using the Kendall’s τ -metric. We prove that there are no perfect single-error-correcting codes in Sn, where n > 4 is a prime or 4 ≤ n ≤ 10. We also prove that if such a code exists for n which is not a prime then the code should have some uniform structure. We define some variations of the Kendall’s τ -metric and consider the related codes and specifically we prove the existence of a perfect single-error-correcting code in S5. Finally, we examine the existence problem of diameter perfect codes in Sn and obtain a new upper bound on the size of a code in Sn with even minimum Kendall’s τ -distance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Permutation Codes and the Kendall's $\tau$-Metric

The rank modulation scheme has been proposed for efficient writing and storing data in non-volatile memory storage. Error-correction in the rank modulation scheme is done by considering permutation codes. In this paper we consider codes in the set of all permutations on n elements, Sn, using the Kendall's τ-metric. We will consider either optimal codes such as perfect codes or concepts related ...

متن کامل

Perfect permutation codes with the Kendall's τ-metric

The rank modulation scheme has been proposed for efficient writing and storing data in non-volatile memory storage. Error-correction in the rank modulation scheme is done by considering permutation codes. In this paper we consider codes in the set of all permutations on n elements, Sn, using the Kendall’s τ -metric. We prove that there are no perfect single-error-correcting codes in Sn, where n...

متن کامل

Extending LP-Decoding for Permutation Codes from Euclidean to Kendall tau Metric

Invented in the 1960’s, permutation codes have reemerged in recent years as a topic of great interest because of properties making them attractive for certain modern technological applications. In 2011 a decoding method called LP (linear programming) decoding was introduced for a class of permutation codes with a Euclidean distance induced metric. In this paper we comparatively analyze the Eucl...

متن کامل

New bounds of permutation codes under Hamming metric and Kendall's τ -metric

Permutation codes are widely studied objects due to their numerous applications in various areas, such as power line communications, block ciphers, and the rank modulation scheme for flash memories. Several kinds of metrics are considered for permutation codes according to their specific applications. This paper concerns some improvements on the bounds of permutation codes under Hamming metric ...

متن کامل

Ulam Sphere Size Analysis for Permutation and Multipermutation Codes Correcting Translocation Errors

Permutation and multipermutation codes in the Ulam metric have been suggested for use in non-volatile memory storage systems such as flash memory devices. In this paper we introduce a new method to calculate permutation sphere sizes in the Ulam metric using Young Tableaux and prove the non-existence of non-trivial perfect permutation codes in the Ulam metric. We then extend the study to multipe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013